Course specifications

Programme(s) on which the course is given: B.Sc. chemistry
Major or minor element of programmes: Major
Department offering the programme: chemistry
Department offering the course: chemistry
Prerequisite: CH111
Academic year / Level: Second
Date of specification approval: 2013

A- Basic Information Title: Thermodynamics

Code: CH 211

Credit Hours:2Lecture:1.5Tutorial:1Practical:2Total:2Teaching staff:Dr. / Ayman Shiebl Diab.

D Desferriers Listers 4's

B- Professional Information

1 – Overall aims of course

- Introduce the basic concepts of thermodynamic.

- Introduce an idea about the maximum work and chemical.

- Study the second law of thermodynamics and its applications

- Learn the importance and the application of thermodynamics to changes of states.

2 – Intended learning outcomes of course (ILOs)

a- Knowledge and understanding:

The graduate should be able after completing the urse to

course to

-Understand why some chemical reactions takes place.

- Differentiate between the first and second laws.

- Recognize the definition and the significance of thermodynamic functions.

b- Intellectual skills

b1- Apply the thermodynamic laws.

b2- Predict and calculate the thermodynamic properties of a solution.

b3- Analysis many of natural phenomena that take place,

b4- Explaining them from thermodynamic point of view .

b5- Evaluate the absolute total energy of the system.

c- Professional and practical skills

c1- Solve problems of different laws

c2- Make regular presentations for the discussion of many related titles or subjects.

d- General and transferable skills

- Improve the skills especially in thinking, mutual discussions and oral presentation.

- Work independently and effectively on solving physical problems.

- Communicate effectively with their lectures and colleagues.

- Use IT and search for information.

3- Contents

Торіс	No.	Lecture	Tutorial/Practical
	of		
	hours		
*The meaning of	2	1	
thermodynamics, its			
applications and limitations (
simple introduction)			
* Difination of some			
thermodynamic terms and			
basic concepts. *			
Classification of systems			
according to the following a)			
nature of system matter. b)			
nature of boundary. *Bulk			
properties used for			
specification of systems under			
thermodynamic investigation.			

*Equilibrium and non-			
equilibrium states.			
*Types of thermodynamic	2	2	
processes. * Differentiation			
between reversible and			
irreversible processes.			
*Nature of heat and work. *			
Types of work.			
Fundamental thermodynamic	2	3	
parameters. *Definition of			
internal energy. * Statement			
of first law *Definition of			
enthalpy (H) at different			
conditions. * Molar heat			
capacity (C)			
* Mathematical relationships	2	4	
between Cv and Cp for ideal			
and real gases. *Adiabatic			
relationships and Joule-			
Thomson effect. *Reversible			
adiabatic work expressions.			
* Definition of heat of reaction	2	5	
under isochoric and isobaric			
conditions. *Complete			
thermochemical equations. *			
Factors affecting the value of			
(Δ H).			
*Effect of temperature on	2	6	
(ΔH) [Kirchoff's equations].			
*Theoretical indirect method			
for calculating (ΔH) .			
* Experimental			
defermunation (direct			
method of ΔH). *			
Types of calorimeters. – water			

calorimeter. – bomb			
calorimeter.			
* Definition of heat of	2	7	
formation and standard heat			
of formation. * Definition of			
heat of combustion.			
* Applications of heat of			
combustion. *Definition of			
heats of solution and			
neutralization.			
*Law's of thermochemistry a)	2	8	
Lavoisieur and La place b)			
Hess's law. * Discution of			
some Hess's law applications.			
* Aspects of criticism of first			
law.			
* Bond energy , atomization			
energy.			
* Spontaneous changes. *	2	9	
General properties of			
spontaneous events. *Physical			
definition of entropy (s). *			
Numerical definition of			
entropy (claussius definition			
).			
*Second law of	2	10	
thermodynamic * Statement			
of third law and study the			
effect of temperature on the			
value of the absolute entropy.			
* Entropy change of an ideal			
gas. * Entropy change of ideal			
gases mixing.			
*Heat engines and Caront	2	11	

cycle. *	Gibbs-Helmholtz				
equation.	*Claussius-				
Clapeyron	n equation				
4– Tea	ching and learning me	ethods			
1- Le	ectures				
2- Pr	oblem classes and gro	oup tutorial.			
3- H	ome works, reports an	d discussion g	roups.		
5- Grad	duate assessment meth	nods	•		
1- sh	ort exam to assess ger	eral performa	nce of graduates.		
2 - N	lid term to assess the	Mid – course n	erformance		
<u>3</u> – F	'inal term to assess the	e all course pe	rformance		
Assessr	nent schedule				
Asse	ssment 1 short exam e	everv two week			
Asse	ssment 2 mid-term w	veek in the 7 th	week		
Asse	ssment 3 Final-exam	week after 1	4 weeks from the		
start	ing of the term.				
Weight	ing of assessments				
Mid-	Term Examination (v	vritten + nract	ical) 20 %		
Fina	I-term Examination ()	written + pruce	tical) 60 %		
Oral	Examination (20 °	0/0		
Seme	ester Work	(written + n	ractical)		
Otha	r types of assessment	(written + p	i actical)		
Out	Total 100%				
Any fo	rmative only accessme	ents	100/0		
Any Iu	1111auve 0111y assessiii				
	0				

- **6-** List of references
- 1- Robert G. Mortimer (2008). Physical Chemistry ,Third Edition, Elsevier Academic Press, USA.
- 7- Facilities required for teaching and learning

providing the lectures rooms with some tools which are essential for teaching like wirless mics and overhead projectors.

```
Course coordinator: Dr / Ayman Diab.
```

Head of Department: Prof. Dr. Adel A. Nassar

Date: / /